Foundations of Machine Learning Al2000 and Al5000

FoML-34 Support Vector Machines (cntd.) Optimization with inequality constraints

> <u>Dr. Konda Reddy Mopuri</u> Department of AI, IIT Hyderabad July-Nov 2025

So far in FoML

- Intro to ML and Probability refresher
- MLE, MAP, and fully Bayesian treatment
- Supervised learning
 - a. Linear Regression with basis functions
 - b. Bias-Variance Decomposition
 - c. Decision Theory three broad classification strategies
 - d. Neural Networks
- Unsupervised learning
 - a. K-Means, Hierarchical, and GMM for clustering
- Kernelizing linear Models
 - a. Dual representation, Kernel trick

For today

- SVM (cntd.)
 - Optimization with inequality constraints

SVM for binary classification

$$\underset{\mathbf{w},b}{\operatorname{arg\,min}} \frac{1}{2} \|\mathbf{w}\|^2$$

$$t_n\left(\mathbf{w}^{\mathrm{T}}\boldsymbol{\phi}(\mathbf{x}_n)+b\right)\geqslant 1, \qquad n=1,\ldots,N.$$

Constrained optimization (Quadratic programming) problem

Earlier - equality constraints

- Maximize f(x) with constraints g(x)=0
- We exploited: gradients are normal to the levelset g(x)=0
- \rightarrow introduced a Lagrangian function L (x, λ)
- Stationary points of $L \rightarrow$ solution to the original problem

- Maximize f(x) such that $g(x) \ge 0$
- Two possibilities
 - a. Stationary point lies in region $g(x) \ge 0$ (inactive constraints)
 - \longrightarrow
 - b. Stationary point lies on the boundary g(x) = 0 (active constraints)
 - \longrightarrow

Primal Lagrangian $L(\mathbf{x}, \lambda) = f(\mathbf{x}) + \lambda g(\mathbf{x})$

- Maximize f(x) such that $g(x) \ge 0$
- Can be formulated as a max-min optimization problem

$$\max_{\mathbf{x}} \min_{\mathbf{x}} L(\mathbf{x}, \lambda) \text{ s.t. } \lambda \geq 0, \ g(\mathbf{x}) \geq 0, \ \lambda g(\mathbf{x}) = 0$$

- Maximize f(x) such that $g(x) \ge 0$
- Can be formulated as a max-min optimization problem

$$\max_{\mathbf{x}} \min_{\lambda} L(\mathbf{x}, \lambda) \text{ s.t. } \lambda \geq 0, \ g(\mathbf{x}) \geq 0, \ \lambda g(\mathbf{x}) = 0$$

 Idea is to solve a dual Lagrangian (optimize w.r.t primal variable x for fixed values of λ)

$$\tilde{L}(\lambda) = \max_{\mathbf{x}} L(\mathbf{x}, \lambda) \text{ with } L(\mathbf{x}, \lambda) = f(\mathbf{x}) + \lambda g(\mathbf{x})$$

$$\tilde{L}(\lambda) = \max_{\mathbf{x}} L(\mathbf{x}, \lambda) \text{ with } L(\mathbf{x}, \lambda) = f(\mathbf{x}) + \lambda g(\mathbf{x})$$

- Work the dual Lagrangian analytically
 - Stationarity condition ($\nabla f(x) = 0$) eliminates x
 - $\circ \rightarrow \text{function of } \lambda$
 - \circ This forms an upper bound on the primal max-min problem (as a function of λ)
 - Minimize w.r.t. λ

- Duality gap
 - \circ For x' that satisfies g(x') \geq 0, we have $f(\mathbf{x}') \leq L(\mathbf{x}',\lambda) \leq \tilde{L}(\lambda)$

$$\qquad \qquad \mathbf{p}^*$$

$$\mathbf{p}^* = \max_{\mathbf{x}, g(\mathbf{x}) \geq 0} f(\mathbf{x}) \leq \min_{\lambda} \tilde{L}(\lambda) = \mathbf{d}^*$$

- Duality gap
 - \circ For x' that satisfies g(x') \geq 0, we have $f(\mathbf{x}') \leq L(\mathbf{x}',\lambda) \leq \tilde{L}(\lambda)$

$$\mathbf{p}^* = \max_{\mathbf{x}, g(\mathbf{x}) \ge 0} f(\mathbf{x}) \le \min_{\lambda} \tilde{L}(\lambda) = \mathbf{d}^*$$

Most convex problems exhibit strong duality, i.e., $\rho^* = d^*$

Summary

Primal problem maximize f(x) subject to g(x)≥0

$$\max_{\mathbf{x}} \min_{\lambda} L(\mathbf{x}, \lambda) \text{ s.t. } \lambda \geq 0, \ g(\mathbf{x}) \geq 0, \ \lambda g(\mathbf{x}) = 0$$

• Dual problem (find the lowest upper bound) $\min_{\lambda} \tilde{L}(\lambda)$ subject to $\lambda \geq 0$

Summary

Primal problem maximize f(x) subject to g(x)≥0

$$\max_{\mathbf{x}} \min_{\lambda} L(\mathbf{x}, \lambda) \text{ s.t. } \lambda \ge 0, \ g(\mathbf{x}) \ge 0, \ \lambda g(\mathbf{x}) = 0$$

- Dual problem (find the lowest upper bound) $\min_{\lambda} \tilde{L}(\lambda)$ subject to $\lambda \geq 0$
- Steps
 - Define Lagrangian $L(\mathbf{x}, \lambda) = f(\mathbf{x}) + \lambda g(\mathbf{x})$
 - \circ Compute the dual $\tilde{L}(\lambda)$
 - O Solve the dual problem $\lambda^* = \min \tilde{L}(\lambda)$ subject to $\lambda \geq 0$
 - \circ Maximize the primal Lagrangian $\mathbf{x}^* = rg \max L(\mathbf{x}, \lambda^*)$

Next

Kernel SVM

