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So far in FoML

e Intro to ML and Probability refresher
e MLE, MAP and fully Bayesian treatment

e Supervised learning

Linear Regression with basis functions
Bias-Variance Decomposition
Decision Theory - three broad classification strategies

Neural Networks
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e Unsupervised learning
Q. K-Means, Hierarchical, and GMM for clustering
e Kernelizing linear Models

Q. Dual representation, Kernel trick
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For today

e SVM (cntd)

o Optimization with inequality constraints
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SVM for binary classification

i

arg min — ||w||?
w,b 2
tn<WTq§(xn)—|—b)>1, n=1,...,N.

Constrained optimization (Quadratic programming) problem
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Optimization with inequality
constraints
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Earlier - equality constraints

e Maximize f(x) with constraints g(x)=0
e We exploited: gradients are normal to the levelset g(x)=0
e — introduced a Lagrangian function L (X, 1)

e Stationary points of L — solution to the original problem
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Optimization with inequality constraints

e Maximize f(x) such that g(x) 20
e [wo possibilities
a. Stationary point lies in region g(x) 2 0 (inactive constraints)
[ | —
b. Stationary point lies on the boundary g(x) = 0 (active constraints)

H —

Primal Lagrangion  L(x,A) = f(x) + Ag(x)
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Optimization with inequality constraints

e Maximize f(x) such that g(x) 20

e Can be formulated as a max-min optimization problem

maxm}nL(x, A)s.t. A>0, g(x) >0, A\g(x) =0
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Optimization with inequality constraints

e Maximize f(x) such that g(x) 20

e Can be formulated as a max-min optimization problem

maxm}%nL(x, A)s.t. A>0, g(x) >0, A\g(x) =0

e |deaisto solve a dual Lagrangian (optimize w.r.t primal variable x

for fixed values of 1)
L(\) = max L(x, \) with L(x,\) = f(x) + Ag(x)
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Optimization with inequality constraints
L\ = max L(x,\) with L(x, ) = f(x) + Ag(x)

e Work the dual Lagrangian analytically
o Stationarity condition (Vf(x) = 0) eliminates x

o - function of 1
o This forms an upper bound on the primal max-min problem (as a function of A)

o  Minimize wrt. 4
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Optimization with inequality constraints

e Duality gop
o For x that satisfies g(x) > 0, we have f(x’) < L(X/, )\) < I:()\)

i> p*= max f(x)<minL()\)=d"*

x,9(x)>0 A
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Optimization with inequality constraints

e Duality gop
o For X that satisfies g(x) > 0, we have f(x’) < L(x’, )\) < E()\)

|:> p*= max f(x)<minL()\)=d"*

x,9(x)>0 A

Most convex problems exhibit strong duality, i.e, p* = d*
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Summary
e Primal problem maximize f(x) subject to g(x)20

|:> maxmgnL(x, A)st. A>0, g(x) >0, A\g(x) =0

e Dual problem (find the lowest upper bound) min L(\) subject to A >0
A
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Summary
e Primal problem maximize f(x) subject to g(x)20

|:> maxm}nL(x, A)st. A>0, g(x) >0, A\g(x) =0

e Dual problem (find the lowest upper bound) min L(\) subject to A >0
A

o Steps
o Define Lagrangian L(x,A) = f(x) + Ag(x)
o Compute the dual L))

o Solve the dual problem X* = mAinJi(A) subject to A >0

o Maximize the primal Lagrangion x* = argmax L(x, \*)
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Next

e Kernel SVM
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